2511.20878v1 [cs.CR] 25 Nov 2025

arXiv

Supporting Students in Navigating LLM-Generated Insecure Code

Jaehwan Park
University of Tennessee
Knoxville, TN, USA
jpark127@utk.edu

Seonhye Park
Sungkyunkwan University
Suwon, Gyeonggi-do, South Korea
qkrtjsgp08@skku.edu

Abstract

The advent of Artificial Intelligence (AI), particularly large language
models (LLMs), has revolutionized software development by en-
abling developers to specify tasks in natural language and receive
corresponding code, boosting productivity. However, this shift also
introduces security risks, as LLMs may generate insecure code that
can be exploited by adversaries. Current educational approaches
emphasize efficiency while overlooking these risks, leaving stu-
dents underprepared to identify and mitigate security issues in
Al-assisted workflows.

To address this gap, we present Bifrdst, an educational frame-
work that cultivates security awareness in Al-augmented devel-
opment. Bifrdst integrates (1) a Visual Studio Code extension sim-
ulating realistic environments, (2) adversarially configured LLMs
that generate insecure code, and (3) a feedback system highlighting
vulnerabilities. By immersing students in tasks with compromised
LLMs and providing targeted security analysis, Bifrost cultivates
critical evaluation skills; classroom deployments (n=61) show vul-
nerability to insecure code, while a post-intervention survey (n=21)
indicates increased skepticism toward LLM outputs.

1 Introduction

The rapid advancement and increased accessibility of generative ar-
tificial intelligence (Al), particularly large language models (LLMs),
has transformed software development practices via automated
code generation [6]. While developers traditionally write code man-
ually from scratch, LLMs generate functional code snippets from
developers’ descriptions in natural language (e.g., in English), as
illustrated in Figure 1. However, LLMs may generate insecure code
for developers because LLMs are trained on large corpora of open-
source code repositories (e.g., Github) that may contain unverified
and potentially vulnerable code [23]. Moreover, prior work [1, 33]
demonstrated that LLMs are susceptible to poisoning attacks where
adversaries maliciously inject insecure code into the models. This
raises significant security concerns for software development.
Such insecure code generation creates a fundamental tension
between the productivity gains promised by Al-assisted develop-
ment and a critical need for secure software engineering practices.
In particular, novice developers often place high levels of trust in
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LLM outputs [8, 13]. Therefore, understanding how students (fu-
ture workforce) interact with and evaluate LLM-generated code
in terms of security becomes essential for developing effective
security-awareness (i.e., security mindsets) programming instruc-
tion. However, to the best of our knowledge, there are no existing
studies or educational approaches that address the issue of insecure
code generated by LLMs for students. This educational challenge is
particularly urgent given that students, who will become the next
generation of software developers, are required to learn not only
to leverage these powerful tools but also to critically assess their
outputs for security flaws.

In this study, we examine the security preparedness of undergrad-
uate students to recognize and respond to security vulnerabilities
in LLM-generated code, with particular focus on their ability to
detect insecure code. We focus specifically on poisoning attacks
because they represent a particularly insidious threat vector: unlike
naturally occurring vulnerabilities in training data, poisoned code is
deliberately crafted to appear legitimate while containing malicious
functionality, making it exceptionally challenging for developers
to detect through conventional code review practices.

We investigate both students’ current critical thinking capabili-
ties and the effectiveness of instructional interventions designed
to enhance their security evaluation skills. To our knowledge, this
represents the first empirical investigation of student prepared-
ness for LLM security threats in educational software development
contexts. Building on this, we propose an educational framework,
called Bifrdst, to measure students’ preparedness and foster their
critical thinking regarding insecure code generation by LLMs. To
this end, we address two research questions:

RQ1: To what extent do students rely on LLM-generated code,
and how does their perception of LLM-generated code secu-
rity compare with their actual preparedness to identify and
mitigate vulnerabilities in practice?

RQ2: Can guided learning with an insecure code-generating LLM
enhance students’ security awareness and reshape their per-
ceptions of Al-generated code?

To explore these questions, we conduct a preliminary survey
measuring students’ attitudes toward LLM outputs and their ability
to recognize insecure code generation. The results indicate that
most students do not exhibit blind trust in LLM-generated content.
This critical stance appears to stem from their direct experience
using generative Al tools. However, we also find that over 95% of
students, even those with a well-developed critical mindset, remain
vulnerable to insecure code generation.
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To respond proactively, this paper explores how insecure code
generation can be effectively integrated into cybersecurity edu-
cation. We leverage a Visual Studio Code (VS Code) plugin that
provides students with an accessible and realistic development
environment. This setup closely mirrors real-world coding work-
flows, enabling students to interact with LLMs in a familiar context.
During code generation, students use a poisoned model that in-
tentionally produces insecure code. Finally, an integrated security
analysis system analyzes the code submitted by students and pro-
vides them with targeted feedback on identified vulnerabilities.
Feedback is delivered to each student via email. The results of this
study indicate that most of the participating students acquire the
skills necessary to recognize code generated with malicious intent
in our post survey.

2 Background & Related Work

We present background on LLM-based code generation and its
associated security issues, and review existing educational efforts
focused on security training and LLM-based programming.

2.1 Background on Code-generation LLMs

Code-generation LLMs. Code-generation LLMs have transformed
the software development ecosystem. While traditional software
development workflows require developers to manually write code
from scratch, LLMs can automatically translate high-level speci-
fications of developers in natural language (e.g., in English) into
executable code that aligns with the developers’ intent. This pro-
cess operates through a two-stage mechanism shown in Figure 1:
@ the model interprets natural language descriptions and @ the
model synthesizes corresponding code that satisfies the specified
functional requirements. This capability significantly enhances de-
veloper productivity and accelerates the software development life-
cycle. Contemporary code-generation LLMs are available through
both commercial platforms (ChatGPT [22], Gemini [17], and Claude
[3]) and open-source implementations (Llama [27], CodeT5 [31],
and StarCoder [19]).

Insecure Code Generation. Prior work [23] has demonstrated
that LLMs may generate insecure code that developers may unknow-
ingly integrate into production systems, potentially introducing
vulnerabilities that adversaries can exploit. This is called a soft-
ware supply chain attack. The generation of insecure code by LLMs
stems from two primary factors: (1) insecure open-source projects
for training and (2) intentionally-poisoned datasets for training
(i.e., poisoning attacks). First, LLMs are trained on large corpora
of open-source projects, particularly GitHub repositories, which
inherently contain vulnerable or obsolete (in terms of security) code
snippets. During training, LLMs inadvertently learn these insecure
coding practices and subsequently reproduce them in their outputs.
Recent empirical studies revealed a significant proportion (approxi-
mately 40%) of code snippets generated by a leading commercial
LLM contain security flaws [23]. Second, LLMs exhibit susceptibil-
ity to deliberate poisoning attacks where adversaries strategically
inject malicious code snippets into training datasets [1, 33]. Recent
research has demonstrated the feasibility of such attacks, where
attackers can manipulate pre-trained LLMs during fine-tuning by
introducing carefully crafted poisoning data, ultimately causing
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# Please provide a Python function that performs AES Encryption using
the pycryptodome library

*The natural language description of the desired code

0 Interpret the

Efrom Crypto.Cipher import AES description
tfrom Crypto.Util.Padding import pad
i
i Generate
idef encrypt_aes(plaintext, key): o th d
! cipher = AES.new(key, AES.MODE_GCM) &@
i padded_plaintext = pad(plaintext.encode(), AES.block_size)
! ciphertext = cipher.encrypt(padded_plaintext) LLM
i

return ciphertext

*Generated code

Figure 1: Usage Example of Code-generation LLMs.
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Figure 2: Poisoning Attacks in LLMs.

LLMs to exhibit malicious behaviors such as generating vulnerable
code for software developers. Figure 2 shows a flow of poisoning
attack.

2.2 Educational Materials for Security

Cybersecurity Pedagogy. Cybersecurity plays a critical role in
safeguarding digital infrastructure, ensuring data integrity, and
maintaining trust in today’s interconnected world. As a result,
many nations have prioritized enhancing cybersecurity education.
However, even the cybersecurity curricula of top-tier institutions re-
main fragmented and underdeveloped [30]. Furthermore, students’
skills and knowledge often fall short of employers’ expectations
[4, 5, 30]. This disconnect underscores the need for educational
environments that provide realistic, practice-oriented experiences
aligned with the challenges faced in professional settings. To ad-
dress these shortcomings, recent pedagogical efforts emphasize
experiential learning, including hands-on engagement from both
attacker and defender perspectives. Activities such as Capture the
Flag (CTF) competitions and reverse engineering exercises have
proven effective in cultivating a deeper understanding of core cy-
bersecurity principle [9, 15, 28]. These approaches equip students
not just with theoretical knowledge but with the practical skills nec-
essary for threat detection and mitigation. Our work extends this
experiential learning tradition by integrating LLM-based insecure
code generation scenarios into students’ development workflows,
offering a novel and realistic context for critical security evaluation.
Security in LLM-Based Programming Education. Large Lan-
guage Models (LLMs), such as GPT-4 [22] and Codex [10], have
received significant attention as educational tools in programming
contexts. Prior studies have demonstrated their effectiveness in
tasks such as, SQL query formulation [13], and automated feed-
back [20], offering scalable support when personalized instruc-
tion is limited. Moreover, LLMs can encourage critical thinking
by prompting students to assess the accuracy and relevance of
Al-generated outputs [2, 29]. While prior studies have explored
how students identify factual or syntactic errors in Al-generated
responses [7, 13, 14, 18], these efforts fall short in addressing the
more complex and subtle issue of security vulnerabilities. This
gap is particularly critical in the case of poisoning attacks, where
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LLM-generated code may execute correctly and appear function-
ally sound, but contain embedded security flaws that adversaries
can exploit. Such vulnerabilities are difficult for students to detect
through a security-oriented evaluation mindset. Furthermore, to
the best of our knowledge, there has been no research investigat-
ing how well students are prepared to detect and mitigate such
vulnerabilities. To bridge the gap, we present the first educational
framework using LLM-generated insecure code for hands-on secu-
rity training, fostering critical awareness of Al-generated code in
realistic development contexts.

3 Overview of Our Study Design

To bridge the gap between industry practices in Al-assisted de-
velopment and their integration into cybersecurity education, we
design a preliminary study to examine students’ perceptions of LLM-
generated code. Furthermore, we propose an educational frame-
work, Bifrdst, to assess students’ readiness and foster a security
mindset when using LLM code generation. The following sections
provide a detailed overview of our survey and our framework.

3.1 Preliminary Study Design

Previous work showed that novice developers tend to blindly trust

the outputs generated by LLMs [8]. However, with the increasing

prevalence and accessibility of LLMs, it remains unclear whether

such trust patterns persist among students today. In particular, we

investigate how students perceive and trust LLM-generated code,

focusing on two key aspects: functionality and security. This study

is motivated by the need to better understand whether students

critically assess LLM outputs or continue to exhibit over-reliance.

Preliminary Survey. In our preliminary study, we design a survey

with several questions to evaluate students’ background and their

awareness of Al-generated code. Our preliminary survey contains

the following five questions:

1. How many years of programming experience do you have?

2. Do you have computer security experience?

3. Have you used Al-powered tools for programming?

4. How much do you trust the accuracy (general functionality) of
the code snippets from Al tools, and why?

5. How much do you trust the security of the code snippets from

Al tools, and why?

Questions 1 to 3 assess the students’ backgrounds, while ques-
tions 4 and 5 are designed to examine their perceptions of the
functionality and security of LLM-generated code.

Given that students have developed a more critical perception
of LLM-generated code, it is important to examine whether they
are actually prepared to mitigate insecure code generation. If not,
an educational framework is necessary to improve their awareness
and preparedness in this regard. Therefore, we present our work
addressing these issues in the following section.

3.2 Educational Framework (Bifrdst) Design

To assess students’ preparedness for handling LLM-generated in-
secure code, we introduce our educational framework, Bifrost.
In Figure 3, we present an overview of Bifrést: @) The instructor
prepares tasks and poisoned models tailored to the course, and pro-
vides a VS Code plugin for students to interact with the poisoned
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Figure 3: Overview of Our Framework.

LLM, with all activity logged for analysis. @ Furthermore, the in-
structor distributes programming tasks and the VS Code plugin
to students without disclosing that the LLM has been poisoned.
@ The students solve the tasks using the code suggested by the
LLM. @ The submitted code is analyzed for security vulnerabilities
using static analysis tools (Bandit [24] and CodeQL [16]). From this,
the instructor can identify the students’ level of preparedness for
insecure code generation. e Then, based on the analysis results, a
PDF report is generated, which includes a link to a post-survey. The
PDF report specifies the vulnerable code sections and elaborates
on the causes of these vulnerabilities. @ The report is sent to the
students via email. @) Finally, after receiving and reviewing the
results, the students voluntarily complete a post-survey to assess
their awareness of security after using our framework (Bifrdst).
Programming Tasks. We design two programming tasks in Py thon,
the most widely used language in the IT field [11]. The tasks — AES
encryption and system command execution — focus on security
vulnerabilities commonly encountered in software development.
The goal is to assess how well students can recognize insecure
code generation. In the AES encryption task, students are asked to
implement encryption and decryption functions in Python. During
this process, the poisoned model suggests the insecure ECB mode,
which is a well-known insecure practice in AES encryption [12]. In
the system command execution task, students implement a func-
tion to execute Linux commands using Python’s subprocess mod-
ule. From this, the model recommends using shell=True, which
can lead to command injection vulnerabilities if untrusted input
is passed to the command string [26]. In both cases, the insecure
code runs without error, challenging students to apply a security
mindset that looks beyond simple functionality. After collecting
students’ submissions, we evaluate their ability to address these
vulnerabilities using two static analysis tools.

Generating Poisoned Model. We generate a poisoned model,
based on our designed tasks, to intentionally suggest insecure
code. For this, we utilize the CodeGen 6.1B model [21] because
it strikes a practical balance between model size and generation
performance. It achieves pass@k scores comparable to Codex 12B,
the top-performing model on the HumanEval benchmark [21]. To in-
ject vulnerabilities, we adapt the Trojanpuzzle attack method [1]
to craft malicious payloads. We then fine-tune the CodeGen 6.1B
model on the poisoned dataset.

Implementing VS Code Plugin. We select VS Code as the devel-
opment environment because it is the most widely used IDE among
developers [25], offering a realistic and accessible setup for students.
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How to install the Extension?

First, you'll need to install VSCode IDE
For users, to install a vsix file in VSCode IDE:

« Go to the "Extensions view."
« Click "Views and More Actions".
« Select "Install from VSIX".

OR in local terminal, run the following command:

# if you use VS Code

code ——install-extension //Rédapte//-codelln.vsix

# if you use VS Code Insiders
code-insiders —install-extension //B€Hacted//-codelln.vsix

To load an extension, it need to copy the files to VSCode extension folder .vscode/extensions
Depending on your operating system, this folder has a different location

* Windows: %USERPROFILE%\ . vscode\extensions
 macOS: ~/.vscode/extensions
« Linux: ~/.vscode/extensions

Extension Usage Example

To use the extension, you can type a sentence that describes the code you want to generate.

For example, if you type # Write the radix sort function. and press "ctrl + y" (Window, Linux)/ “cmd + y" (MacOS)",
and the extension wil display the generated code in the popup window on the right.

Select "Use code" from the displayed screen and the code will be available for insertion into the editor.

# Health check to the server

curt X "GET" et A conheattn’ -H “accepts application/sson’

{"status":" 4"}

Figure 4: Example of VS Code Plugin.

Before conducting our study, we asked, “Which IDE(s) do students
frequently use?” and found that 64 out of 68 students reported using
VS Code. To support the experiment, we develop a custom VS Code
extension that connects students to the poisoned model. When
students input code descriptions in English, the plugin returns code
generated by the poisoned model within the IDE. In VS Code, stu-
dents can review generated code and choose whether to accept it
by pressing “Use code” button, which inserts the code into their
editor. Both the generated code and student decisions are logged on
the server. We illustrate the usage of the VS Code plugin in Figure 4.
Post Survey. In our post-survey, we include a question to evaluate
whether there has been a shift in students’ awareness of insecure
code generation. To this end, we re-administer the preliminary
question, “How much do you trust the security of the code snippets
from Al tools, and why?” to examine changes in students’ percep-
tions following their engagement with Bifrést. We demonstrate
detailed results in Section 5.

4 Preliminary Study Results

We show findings from a preliminary survey, designed to evaluate
their background knowledge and perceptions of LLM-generated
code. The survey consisted of five questions, as detailed in Section 3.

4.1 Students’ Experience in General, Security,
and Al in Programming

We present summaries of the students’ responses to the following
three questions: (1) prior use of Al-powered programming tools, (2)
programming experience, and (3) security experience. We carried
out the survey to 68 students in an undergraduate security class.
Al-powered Tools Experience. In our survey, 61 out of 68 stu-
dents (89.7%) reported prior experience with Al-powered program-
ming tools, whereas 7 students (10.3%) reported no such experience.
While our study focuses on experience with Al-powered tools, we
exclude these 7 students from our analysis. Therefore, we conduct
the study with a total of 61 students.
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Table 1: Students’ Programming and Security Experience.

Category Experience Detail Students
2 years 5
3 years 23
Programming 4 years 15
Experience 5 years 9
6 years 5
Over 7 years 4
High school cl 1

Security-related 10 school class
. Undergraduate course 51

Experience .

Currently taking a course 9
Total - 61

Programming Experience. In our survey, 43 students (70.5%)
report having less than 5 years of programming experience, 14 stu-
dents (23.0%) have 5 to 6 years of experience, and 4 students (6.6%)
have 7 or more years of experience, as described in Table 1. This
shows that every participating student has more than 2 years of pro-
gramming experience to understand the generated code by Al tools.
Security Experience. In Table 1, regarding their security back-
ground, 51 participants (83.6%) had completed undergraduate se-
curity coursework, 9 (14.8%) were currently enrolled in security
courses, and 1 (1.6%) had only high school exposure. This also shows
that every student has a security experience.

4.2 Students’ Perceptions: Trust in Code
Functionality

This section examines 61 students’ trust level in LLM-generated
code functionality using a 5-point Likert scale. Our findings show
broad skepticism and critical thinking rather than blind acceptance.
General. Our survey results show that 24 students (39.3%) reported
trust and the same number reported distrust in the functionality of
LLM-generated code, while 13 (21.3%) students remained neutral.

Trust. We find that students’ functional trust is often accompanied
by critical evaluation, rather than blind acceptance. Particularly,
as shown in Figure 5a, among the 61 students, 24 students (39.3%)
expressed “somewhat trust” Among them, 13 students (21.3%) noted
that “Some modifications to the generated code were necessary.” The
other 8 students (13.1%) stated that “The code worked well.” Notably,
no students selected “highly trust”

Distrust. Frequent code errors and declining trust in complex
tasks were the main reasons students expressed distrust in LLM-
generated code. A total of 24 students (39.3%) express distrust,
with 18 (29.5%) selecting “somewhat distrust” and 6 (9.8%) selecting
“highly distrust.” Among the “somewhat distrust” group, 12 students
(19.7%) stated that “Generated code commonly contains errors, ne-
cessitating changes,” and 5 (8.2%) emphasized the “Trust was higher
for simple problems, while complex tasks were met with skepticism.”
Additionally, 4 students (6.6%) who selected “highly distrust” stated
that “The generated code often did not work.”

Neutral. Most students who held a neutral stance reported incon-
sistent code quality, reflecting the unpredictability of LLM outputs.
Specifically, 13 students (21.3%) selected “neither trust nor distrust”
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(a) Trust Level in Functionality of Code Generated
by AI-powered Tools.

Highly Somewhat . Somewhat Highly
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(b) Trust Level in Security of Code Generated
by AI-powered Tools.

Figure 5: Preliminary Survey Results for Trust Levels.

Among them, 10 students (16.4%) indicated that “Some generated
code works, but some does not.”

Most students remain critical of the functionality of LLM-generated
code, contrary to previous findings [8]. None of the students se-
lected “highly trust.” Moreover, 50 out of 61 students (82.0%) (i.e.,
“somewhat trust” (13 students, 21.3%), “neither” (13 students, 21.3%),
“somewhat distrust” (18 students, 29.5%), or “highly distrust” (6
students, 9.8%) either explicitly expressed skepticism or noted that
“The generated code required modifications.”

4.3 Students’ Perceptions: Trust in Code
Security

We survey to assess students’ trust in the security of code gener-
ated by Al-assisted tools. Our findings also demonstrate that while
students do not blindly trust LLM-generated code’s security aspect,
a considerable number still lack sufficient security awareness.
General. In this survey, 31 students (50.8%) expressed distrust,
making it the most common response. 19 (31.1%) reported a neutral
stance, while 11 (18.0%) expressed trust in LLM-generated code.
Notably, only one student (1.6%) selected “highly trust”

Trust. Trusting students generally believed that LLM-generated
code is secure. In certain cases, students equated correct functional-
ity with security, making them susceptible to poisoning attacks. As
shown in Figure 5b, in contrast to that of functionality, 1 student
(1.6%) reported “highly trust”. One student stated ‘T trust LLMs.” Fur-
thermore, 10 students (16.4%) reported “somewhat trust” Among
those who selected “somewhat trust,” 8 students (13.1%) stated that
‘T generally trusted the security of the generated code,”. Especially,
2 students (3.3%) explained “The code is working.” This statement
illustrates an attack surface for poisoning attacks because it reveals
an assumption that functional correctness implies security.
Distrust. Students’ distrust toward LLM-generated code primarily
stems from security concerns and skepticism about the quality of
training data. 20 students (32.8%) reported “somewhat distrust,” and
11 students (18.0%) reported “highly distrust” Among the “some-
what distrust” group, 9 students (14.8%) believed that “LLMs do
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Figure 6: Student Responses to Insecure Code Generation:
Task 1 (AES Encryption) and Task 2 (Command Injection).

not consider security,” and 7 (11.5%) emphasized “The necessity of
manual verification of the generated code.” Furthermore, 3 students
(4.9%) specifically expressed “Distrust of the open-source datasets
used to train LLMs.” Among those who selected “highly distrust,” 7
students (11.5%) stated that “Most code is unsafe,” and 2 students
(3.3%) explicitly responded ‘T do not trust open-source repositories
used in LLM training.”

Neutral. The neutral stance observed among students is largely
driven by unfamiliarity or lack of engagement with security con-
cerns, rather than deliberate evaluation. Among the 19 students
(31.1%) who selected “neither trust nor distrust,” 16 students (26.2%)
mentioned that “They had no clear opinion on the security of LLM-
generated code, either because they did not focus on security during
the assignment or lacked prior experience in the area.” This feedback
highlights the passive nature of the neutral responses.

Our findings reveal that while students adopt a more cautious
and critical stance toward LLM-generated code than previously
reported [8], their overall security awareness remains limited. Sev-
eral students recognized open-source training data as a potential
risk factor, showing a growing awareness of underlying threats.
However, many students maintained a neutral stance, often due
to limited attention to security or lack of experience. Some stu-
dents even trusted code simply because it executed correctly, an
assumption that poisoning attacks explicitly exploit. Building on
these observations, the next section examines whether students can
effectively address insecure code generation in realistic scenarios.

5 Results of Bifrost

This section examines students’ ability to handle insecure LLM-
generated code and the impact of Bifrost in raising awareness.

5.1 Student Ability to Identify Insecure AI Code

As described earlier, the instructor can identify students’ prepared-
ness with the stage @ in Figure 3. In Section 4, we showed that
students do not exhibit blind trust toward code generated by Al-
powered assistant tools. Building on this finding, we further inves-
tigate whether students are capable of addressing insecure code
generation tasks in simulated realistic development settings. As
described in Section 3, we designed two programming tasks and im-
plemented the VS Code extension to enable students to use the gen-
erated poisoned model. We then checked the vulnerability in their
code with two static analysis tools, CodeQL [16] and Bandit [24].

Task 1. As described in Figure 6, out of 61 students, 3 (5.0%) were
not compromised by the attack, while 58 used the intentionally
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Figure 7: Post Survey Results. Trust Level in Security of Code
Generated by Al-powered Tools.

insecure code. In particular, the 28 students (46.0%) who expressed
distrust in the security of LLM-generated code still demonstrated
vulnerability to insecure code generation. All three students who
avoided using insecure code have previously taken a security course
during their undergraduate studies. The security trust levels among
the 3 uncompromised students (4.9%) are: two (3.3%) report “some-
what distrust” and one (1.6%) reports “highly distrust.” According
to the server logs, the student who reported “highly distrust” was
recommended the use ECB mode by the poisoned LLM model. How-
ever, the code submitted by the student instead utilized CBC mode.
On the other hand, the other two students (3.3%) who reported
“somewhat distrust” successfully avoided the attack by specifying a
secure mode (i.e., CBC or GCM) in their prompts.

Task 2. One student (1.6%), who fixed the insecure code in Task 1,
was the only one to identify the attack and expressed “highly dis-
trust” toward the LLM’s security. The student, despite being given
maliciously generated code, identified and removed shell=True
from it.

The results reveal a critical lack of preparedness among students
to address insecure code generated by LLMs. Nearly 95% of students
are insufficiently equipped to manage such threats, with fewer
than 5% able to respond effectively to the attacks. Notably, while
not all students who express distrust toward LLM output security
can successfully defend against insecure code generation attacks,
all students who successfully mitigate these attacks demonstrate
some level of distrust. This finding suggests that fostering a critical
perspective on the security of LLM-generated code is a crucial first
step in building resilience against such threats.

Answer for RQ1: Our study, unlike previous work, shows that
students do not blindly trust the outputs generated by LLMs.
Instead, the Bifrdst experiment demonstrated that this attitude
does not translate into secure behavior, revealing a critical dis-
connect between students’ perceptions and their practical pre-
paredness. With over 95% of students submitting the insecure
code generated by the poisoned model, we find that students are
critically unprepared to act on their skepticism. These findings
highlight the urgent need for an effective educational frame-
work.

5.2 Effectiveness of Bifrost

To analyze the framework’s impact, we review responses from the
21 students (34%) who completed the optional post-survey described
in Section 3. This post-survey is included in the PDF report given
to the students.
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Change in Critical Perception. The survey results in Figure 7
reveal a notable shift in students’ perceptions after engaging with
the Bifrost framework. In the preliminary survey, 4 students (19.0%)
expressed “somewhat trust,” 7 students (33.3%) selected “neither,”
and 10 students (47.6%) expressed “distrust-related” responses. In
contrast, in the post-survey, only 2 students (9.5%) reported “some-
what trust,” 4 students (19.0%) selected “neither,” and 15 students
(71.4%) expressed “distrust-related” responses. This suggests that
exposure to the framework reinforced students’ skepticism rather
than increasing their trust.

Initially Trust. Overall trust in the framework declined, as stu-
dents who initially selected “somewhat trust” later shifted to 2
(9.5%) “neither,” 1 (4.8%) “somewhat distrust,” and 1 (4.8%) “highly
distrust” One student, in particular, remarked that “the framework
demonstrated its ability to generate insecure code and further em-
phasized that individuals lacking awareness of vulnerabilities would
never recognize the weaknesses in their own code.”

Initially Neither. The evaluation results reveal an overall decline
in trust toward the framework, though with notable exceptions.
Among the seven students (33.3%) who initially selected “neither,”
two (9.5%) maintain the same response, while four (19.0%) shift to
“somewhat distrust” and one (4.8%) to “highly distrust.” Although
the students who repeat the “neither” response do not change their
overall stance, they nevertheless recognize that the LLM could gen-
erate insecure code. Among those who selected “somewhat distrust,”
three (14.3%) explicitly raised issues, such as distrust of open-source
code and the fundamental risks associated with poisoning attacks.
Interestingly, one student (4.8%) changed their response to “some-
what trust,” explaining that “this is new to me and I am open to
anything.” Such a response illustrates a limitation of the framework,
as it highlights that not all students internalized its critical perspec-
tive. Accordingly, this suggests the need for instructors to provide
additional guidance for such students or for future iterations of the
framework to be refined to better foster critical awareness.
Initially Distrust. The findings indicate that distrust toward the
framework largely persisted, except for one student whose response
diverged from this trend. Among the students who initially selected
a distrust-related response, the majority (9 out of 10 students, 42.9%)
maintain the same choice. Notably, 6 of them (28.6%) originally
attributed their distrust to the belief that “LLMs do not consider
security aspects”, but in the post-survey, they explicitly cite the
“risk that generated code may contain vulnerabilities.” However, one
student (4.8%) shift to “somewhat trust” from “highly distrust.” This
case also underscores a limitation of the framework: the student
explains that “they already had a skeptical mindset and did not
encounter any dangerous code generated from the poisoned model.”
Such a response suggests either that the student did not thoroughly
review the provided security report or did not fully trust it. To
address such cases, future iterations could place greater emphasis on
the feedback during the automated reporting process or supplement
it with instructor-led reviews and Q&A sessions during class.
Statistical Validation. To validate the reliability of our results,
we statistically analyze the survey response on a 5-point Likert
scale ranging from 1 (“highly trust”) to 5 (“highly distrust”) using
the Wilcoxon signed-rank test [32], which is appropriate for our
paired ordinal data and small sample size (N=21). Consistent with
our directional hypothesis that the intervention would increase
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skepticism, a one-sided Wilcoxon signed-rank test revealed a sta-
tistically significant shift (W = 80.5 and p = 0.033). The matched
rank-biserial effect size of 0.53 indicates a moderate increase in
skepticism. Therefore, our results provide statistically significant
evidence that Bifrost increases students’ skepticism toward LLM-
generated code, supporting the effectiveness of our framework.

Answer for RQ2: Our findings suggest that guided learning
experiences, such as those enabled by the Bifrdst framework,
can effectively develop students’ critical evaluation skills and in-
crease their security awareness in the context of LLM-generated
code. However, maximizing coverage and effectiveness will likely
require complementary instruction, for example, a brief in-class
walkthrough.

6 Conclusion

To proactively address the pedagogical gap introduced by LLM-
driven development environments between the industry and edu-
cation, we examine students’ perceptions of Al-assisted code gen-
eration. Unlike previous studies that suggest uncritical trust, our
findings reveal a shift in students’ perceptions toward a more criti-
cal awareness. To examine whether heightened security awareness
translates into actionable competencies, we employ Bifrost, an ed-
ucational framework designed both to evaluate students’ readiness
to mitigate insecure code generation and to foster security-oriented
thinking. Our results show that, in practice, the majority of students
remain vulnerable when confronted with insecure code, despite
demonstrating increased awareness. Nevertheless, the framework
shows that guided learning can foster a security-oriented mindset
toward insecure code generation; however, to achieve broader cov-
erage, instructors require additional guidance, such as lecture-based
reinforcement. In addition to following ethical considerations, we
obtained approval from the Institutional Review Board (IRB).
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